Analysis of 1=f Noise in Switched MOSFET Circuits
نویسندگان
چکیده
Analysis of 1 noise in MOSFET circuits is typically performed in the frequency domain using the standard stationary 1 noise model. Recent experimental results, however, have shown that the estimates using this model can be quite inaccurate especially for switched circuits. In the case of a periodically switched transistor, measured 1 noise power spectral density (psd) was shown to be significantly lower than the estimate using the standard 1 noise model. For a ring oscillator, measured 1 -induced phase noise psd was shown to be significantly lower than the estimate using the standard 1 noise model. For a source follower reset circuit, measured 1 noise power was also shown to be lower than the estimate using the standard 1 model. In analyzing noise in the follower reset circuit using frequency-domain analysis, a low cutoff frequency that is inversely proportional to the circuit on-time is assumed. The choice of this low cutoff frequency is quite arbitrary and can cause significant inaccuracy in estimating noise power. Moreover, during reset, the circuit is not in steady state, and thus frequency-domain analysis does not apply. This paper proposes a nonstationary extension of the standard 1 noise model, which allows us to analyze 1 noise in switched MOSFET circuits more accurately. Using our model, we analyze noise for the three aforementioned switched circuit examples and obtain results that are consistent with the reported measurements.
منابع مشابه
A Sub-µW Tuneable Switched-Capacitor Amplifier-Filter for Neural Recording Using a Class-C Inverter
A two stage sub-µW Inverter-based switched-capacitor amplifier-filter is presented which is capable of amplifying both spikes and local field potentials (LFP) signals. Here we employ a switched capacitor technique for frequency tuning and reducing of 1/f noise of two stages. The reduction of power consumption is very necessary for neural recording devices however, in switched capacitor (SC) cir...
متن کاملLong Term Transients in MOSFET 1/f Noise with Switched Bias
Long term time dependent transients in l/f noise have been observed and are reported on NMOS transistors operating with switched gate bias. The results are interpreted as a modification of the time dependence of random telegraph signals. The results have important implications in the understanding of the nature of l/f noise and in the understanding the effect of l/f noise in switched capacitor ...
متن کاملOutput-Conductance Transition-Free Method for Improving Radio-Frequency Linearity of SOI MOSFET Circuits
In this article, a novel concept is introduced to improve the radio frequency (RF) linearity of partially-depleted (PD) silicon-on-insulator (SOI) MOSFET circuits. The transition due to the non-zero body resistance (RBody) in output conductance of PD SOI devices leads to linearity degradation. A relation for RBody is defined to eliminate the transition and a method to obtain transition-free c...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001